Titre : |
Systems of conservation laws : 2 : Geometric structures, oscillations, and initial-boundary value problems |
Type de document : |
texte imprimé |
Auteurs : |
Denis Serre (1954-..), Auteur ; Ian Naismith Sneddon (1919-2000), Traducteur |
Editeur : |
Cambridge : Cambridge University Press |
Année de publication : |
2000 |
ISBN/ISSN/EAN : |
978-0-521-63330-7 |
Langues : |
Anglais (eng) Langues originales : Français (fre) |
Catégories : |
Mathématiques Mathématiques:Analyse mathématique Mathématiques:Analyse mathématique:Equations différentielles partielles
|
Mots-clés : |
Lois de conservation (physique) Mathématiques Physique mathématique Équations aux dérivées partielles Cauchy, Problème de Milieux continus, Mécanique des |
Index. décimale : |
515.353 Equations différentielles partielles |
Résumé : |
Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations. [source : 4ème de couv.] |
Systems of conservation laws : 2 : Geometric structures, oscillations, and initial-boundary value problems [texte imprimé] / Denis Serre (1954-..), Auteur ; Ian Naismith Sneddon (1919-2000), Traducteur . - Cambridge : Cambridge University Press, 2000. ISBN : 978-0-521-63330-7 Langues : Anglais ( eng) Langues originales : Français ( fre)
Catégories : |
Mathématiques Mathématiques:Analyse mathématique Mathématiques:Analyse mathématique:Equations différentielles partielles
|
Mots-clés : |
Lois de conservation (physique) Mathématiques Physique mathématique Équations aux dérivées partielles Cauchy, Problème de Milieux continus, Mécanique des |
Index. décimale : |
515.353 Equations différentielles partielles |
Résumé : |
Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations. [source : 4ème de couv.] |
|  |